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Abstract

A crucial and limiting factor in data reuse is the lack of accurate, structured,
and complete descriptions of data, known as metadata. Towards improving
the quantity and quality of metadata, we propose a novel metadata predic-
tion framework to learn associations from existing metadata that can be used
to predict metadata values. We evaluate our framework in the context of ex-
perimental metadata from the Gene Expression Omnibus (GEO). We applied
four rule mining algorithms to the most common structured metadata ele-
ments (sample type, molecular type, platform, label type and organism) from
over 1,3 million GEO records. We examined the quality of well supported
rules from each algorithm and visualized the dependencies among metadata
elements. Finally, we evaluated the performance of the algorithms in terms of
accuracy, precision, recall, and F-measure. We found that PART is the best
algorithm outperforming Apriori, Predictive Apriori, and Decision Table.
All algorithms perform significantly better in predicting class values than the
majority vote classifier. We found that the performance of the algorithms
is related to the dimensionality of the GEO elements. The average perfor-
mance of all algorithm increases due of the decreasing of dimensionality of the
unique values of these elements (2697 platforms, 537 organisms, 454 labels,
9 molecules, and 5 types). Our work suggests that experimental metadata
such as present in GEO can be accurately predicted using rule mining al-
gorithms. Our work has implications for both prospective and retrospective
augmentation of metadata quality, which are geared towards making data
easier to find and reuse.
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1. INTRODUCTION1

Biomedical data is increasingly being viewed as a valuable commodity2

that can be mined for new insights beyond that for which it was created.3

Large community-focused databases such as the Gene Expression Omnibus4

(GEO) [1] or the database of Genotypes and Phenotypes (dbGAP) [2] of-5

fer a wealth of omics’ data that have been used in developing diagnostic,6

prognostic, and therapeutic models [3, 4]. One crucial and limiting factor7

in the reuse of data lies in having access to accurate descriptions about the8

data - known as metadata. Community standards to describe an experiment9

(e.g. Minimum Information About a Microarray Experiment; MIAME [5])10

are being widely promoted to highlight essential metadata, but creating good11

metadata can be challenging [6, 7].12

Indeed, metadata is often of low quality, and many entries are absent, erro-13

neous or inconsistent. The largest database of gene expression studies, the14

GEO microarray database, contains 50,000 studies, over 1.3 million sam-15

ples, and is still growing [1]. Yet the description of these samples suffers from16

a lack of consistency and completeness. For example, a preliminary analysis17

revealed that are 32 different ways to specify the age in GEO (e.g. age, Age,18

Age years, age year). Yet, these metadata are essential for researchers to find19

and reuse datasets of interest. When metadata are incomplete or inaccurate,20

researchers will miss relevant hits while being forced to sift through irrele-21

vant results - resulting in lower productivity and potentially weaker scientific22

analyses. These issues are often attributed to lack of appropriate supporting23

infrastructure [8].24

Metadata authoring applications such as ISA-Tools [9] or RightField [10] can25

be used to codify guidelines that specify multiple metadata elements and re-26

quire users to use a set of controlled terms, such as terms from specified27

ontologies contained in the NCBO BioPortal [11]. Yet even with such tools,28

authoring good metadata is tedious and error-prone, and could benefit from29

more automation. The development of more effective platforms for metadata30

authoring and discovery is one of the goals of the Center for Expanded Data31

Annotation and Retrieval (CEDAR) [7, 8].32

In this study, we examine the utility of supervised machine learning to pre-33

dict metadata from existing metadata. This will help metadata submitter34

during the submission process. Predicting metadata could be a guideline35

for template authors during the process of metadata definition. This facility36

will not only significantly facilitate the template definition task but also will37
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make the resulting templates more comprehensive and reflective of the ac-38

tual data. In CEDAR we also take advantage of emerging community-based39

standard templates for describing different kinds of biomedical datasets, and40

we investigate the use of computational techniques to help investigators to41

assemble templates and to fill in their values [7].42

Learning value sets from data will help ensure that template authors do not43

miss important value sets that appear frequently in the data. Thus, data44

submitters will be able to find the terms they need, hence improving the45

quality of the metadata.46

We use the increasing amounts of structured metadata to learn from as the47

project progresses and learn value sets conditional on the experimental level48

metadata. This incorporation of structural knowledge into the learning tech-49

nology will allow us to infer common metadata patterns and their value sets50

in the context of technology platform, organism, molecule, label or sample51

type. Our key goal is to facilitate as much of the metadata collection process52

as possible, by suggesting possible value sets for the fields based on available53

data. This process will limit the value options, will reduce the burden of en-54

tering metadata terms and will significantly shorten the time that is needed55

for investigators to enter metadata.56

We found that experimental metadata such as present in GEO can be accu-57

rately predicted using rule mining algorithms. Our work has implications for58

both prospective and retrospective augmentation of metadata quality, which59

are geared towards making data easier to find and reuse.60

2. BACKGROUND61

Supervised learning uses classification algorithms to learn from data and62

make predictions. The goal of supervised learning is to build a model of63

the distribution of class labels from instances [12]. The classifier can then64

assign class labels to instances in which the values of the predictor features65

are known, but the value of the class label is unknown. Numerous supervised66

classification techniques have been developed including decision trees, arti-67

ficial neural networks, and statistical techniques such as bayesian networks68

[12]. Machine learning has been widely applied across domains including69

the biomedical domain [13], such as protein function prediction [14], clinical70

outcome prediction [15] and survival analysis [16].71

As we mentioned earlier, this study specifically is about metadata and asso-72

ciation between them. Therefore, using machine learning will be helpful to73
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mine the data, learn from the data, and find this association. In our study, we74

wanted to find the correlation between metadata elements and their values.75

Association rules are the main technique for data mining to find these cor-76

relations. Sharma et al., compared association rule mining algorithms (e.g.77

AIS and FP-Growth, and Apriori) [17]. Each algorithm has advantages and78

disadvantages according to their comparison. For example, AIS requires mul-79

tiple scanning of the database, only rules that have one item in right side can80

be generated, and too many candidate itemsets are generated. FP-Growth81

also has some disadvantages such as the resulting FP-Tree is not unique for82

the same logical database and it cannot be used in interactive mining system.83

Apriori is scanning the complete database multiple times but still, it is easy84

to implement. Predictive Apriori algorithm overcomes this disadvantage of85

the Apriori algorithm with scanning the beast n rules instead of scanning all86

rules. PART algorithm uses partial decision trees to generate the decision87

list that is shown in the output, but only this final list is what is used to88

make classifications and with that, we have better performance.89

In previously published manuscript [18], we proposed a framework to predict90

structured metadata terms from unstructured metadata for improving qual-91

ity and quantity of metadata, using the Gene Expression Omnibus (GEO)92

microarray database. Our framework consists of classifiers trained using93

term frequency-inverse document frequency (TF-IDF) features and a sec-94

ond approach based on topics modeled using a Latent Dirichlet Allocation95

model (LDA) to reduce the dimensionality of the unstructured data. Our96

results based on GEO database showed that structured metadata can be97

predicted with TF-IDF more accurate than LDA. And both TF-IDF and98

LDA are outperforming the majority vote baseline as well. Overall this is99

a promising approach for metadata prediction that is likely to be applicable100

to other datasets and has implications for researchers interested in biomedi-101

cal metadata curation and metadata prediction. Considering that metadata102

is structured and unstructured in GEO and other resources, we decided to103

find the correlation between structured metadata. In this study, we found104

the correlation between selected structured metadata elements versus in pre-105

vious work we predicted structure metadata from the free text. Structure106

metadata has a potential to be predicted and suggested to metadata tem-107

plate author or metadata submitter during the submission process based on108

each other.109

Several studies have been done regarding GEO metadata prediction. For110

instance Buckberry et al., [19] presented a method for predicting the sex of111
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samples in gene expression microarray datasets. They believe that the meta-112

data associated with many publicly available expression microarray datasets113

often lacks sample sex information, therefore limiting the reuse of these data114

in new analyses or larger meta-analyses where the effect of sex is to be con-115

sidered. The package called massiR provides a method for researchers to116

predict the sex of samples in microarray datasets. ”This package implements117

unsupervised clustering methods to classify samples into male and female118

groups, providing an efficient way to identify or confirm the sex of samples in119

mammalian microarray datasets” [19]. As it is clear this study is just about120

particular field in GEO data and it is specialized to predict the sex of the121

samples.122

In this study, we propose methods to predict structured metadata. This123

method is applicable to any structured metadata in biomedical field. We use124

association rule mining (ARM) algorithms due to their interpretability and125

good performance [20]. ARM is a method for discovering relations between126

variables in large databases. [21]. ARM was defined by Agrawal in the early127

90s in relation to a so called market basket analysis using APRIORI [20].128

Since then, multiple studies have used this technique successfully to model129

data [22]. For example, ARM has been used to predict infection detection130

[23], to detect common risk factors in pediatric diseases [24], to understand131

the interaction between proteins [25], to discover frequent patterns in gene132

data [22], and to understand what drugs are co-prescribed with antacids [26].133

To the best of our knowledge, ARM has not yet been applied for predicting134

experimental metadata.135

136

3. OBJECTIVE137

We hypothesized that there are strong correlations between metadata el-138

ements and their values that can be used to predict metadata. The goal139

of this study is to predict the metadata based on the correlation between140

them. For example, there is a correlation between platforms, organism, and141

type. For GPL570 as a platform and Homo Sapiens as an organism a possi-142

ble type of the study is RNA. We used four algorithms: Apriori, Predictive143

Apriori, Decision Table and PART (see below). We used these algorithms to144

find the association between metadata elements and to predict the value of145

each element of interest. We then evaluated our approach using a standard146

cross-validation of experimental metadata from GEO, a primary repository147
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of gene expression data.148

149

4. MATERIALS AND METHODS150

4.1. Metadata151

Our work focused on GEO [1], a large and well known database of gene152

expression data which contains experimental metadata authored by the orig-153

inal data submitters. We used the ”GEOmetadb” package [27] in R [28] to154

query and obtain the metadata for microarray experiments. GEOmetadb155

implements an SQLite database that stores all the metadata associated with156

all GEO data types including GEO samples (GSM), GEO platforms (GPL),157

GEO data series (GSE). GEO itself stores curated gene expression DataSets158

(GDS) that allows non-technical users to identify and visualize differentially159

expressed genes in a given study. However, GEO DataSet curation is not160

standardized across studies which preclude more powerful methods such as161

integrated meta-analysis across multiple experiments to find robust gene sig-162

natures. GDS have not been considered in this study.163

164

Element Description
Platform A platform is a list of probes that define what

set of molecules may be detected (GPLxxxxx).
Type Type of sample.
Organism The organism(s) from which the biological

material was derived for experiment.
Molecule Type of molecule that was extracted from

the biological material.
Label The compound used to label the extract.

Table 1: Structured metadata elements in GEO. This table lists the structured metadata
elements along with a description of each element [1].

The GEO database as of October 2015 contains 1,368,682 individual sam-165

ple records in 50,000 studies or series. It includes 1.4 million samples now166

(June 2016), which is decreased to 1.2 million samples after removing ele-167

ments that occur less than 250 times. A series is identified with a series id168

(i.e. GSExxxxx) and each series consist of one or more samples. A sample169

(identified with GSMxxxxx) describes the set of molecules that are being170
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probed and references a platform (i.e. GPLxxxxx) used to representing the171

molecular data [1]. Each study is annotated with up to 32 metadata fields172

representing the conditions under which the sample was handled. There are173

32 fields (16 for each channel of study including ch1 and ch2).174

After discussion with the researchers in the field we considered five com-175

mon structured elements for this study including (sample type, molecu-176

lar type, platform, label type and organism (Table 1)) from 16 elements177

(title, gsm, series-id, gpl, status, submission data, last-update-date, type,178

sources name, organism, characteristics, molecule, label, treatment proto-179

cols, extract-protocol, label -protocol). Other elements are date related (e.g.180

last-update-date) or they are considered as unstructured (e.g. title) meta-181

data. Therefore, we removed free text and date related information. We182

also removed the studies with more than half missing value. We explained183

the prediction for unstructured metadata such as title of the study in our184

previous work. We define a structured element as a metadata element which185

contains a single concept, such as the organism from which the material186

was derived. More specifically, GEO metadata includes 5 sample types (e.g.187

RNA, genomic), 9 types of molecules that were extracted from the biologi-188

cal material (e.g., total RNA, cytoplasmic RNA), 12,431 different platforms189

(e.g., GPL13653 for Affymetrix GeneChip Rat Genome U34A Array), 1,641190

compounds used to label the samples (e.g., biotin, Cy3) and 2,434 organisms191

(e.g. mus musculus). We removed elements that occur less than 250 times192

to avoid the long tail, resulting in modeling 2,697 platforms, 5 types, 537193

organisms, 9 molecule, and 454 labels (Table 2). We also made sure we did194

not reduce the number of type and molecule with this set up threshold, which195

they were not that many to begin with.196

Element Name classes selected classes Example Values
Platform 12431 2697 gpl570, gpl1261
Type 5 5 rna, genomic, sra
Organism 2434 537 homo sapiens, zea mays
Molecule 9 9 total rna, polya rna
Label 1641 454 biotin, cy3, cy5

Table 2: Number of classes in our experimental setup. This table shows the number of
classes which constitute as well as example values, for each structured element.

197
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4.2. Association Rule Mining Algorithms198

In this section, we describe the four different Association Rule Mining199

Algorithms (ARM) algorithms including Apriori, Predictive Apriori, Deci-200

sion Table and PART. These algorithms have been used to learn the rules201

and find the possible associations between five structural GEO elements and202

their values. We compared all four algorithms with the majority vote classi-203

fier representing the baseline model.204

An association rule is an implication expression of the form X to Y , where205

X and Y are disjoint itemsets. The strength of an association rule can be206

measured in terms of its support and confidence. Support determines how207

often a rule is applicable to a given data set, while confidence determines208

how frequently items in Y appear in transactions that contain X [17].209

The Apriori algorithm identifies association rules by identifying frequently210

occurring item sets [20]. An item set is called frequent when its support is211

above a defined minimum support. An item set X of length L is frequent if212

and only if all subsets of X with length L−1 are frequent. For every frequent213

item set T and every non-empty subset S of T, Apriori outputs a rule of the214

form S ⇒ (T − S) if and only if the confidence of that rule is above the215

user specified threshold. To run the algorithm some parameters had to be216

defined (e.g. T=0: The metric type which has been used to rank the rules.217

(default = confidence); C=0.9: The minimum confidence of a rule; D= 0.05:218

The delta by which the minimum support is decreased in each iteration; U219

=1.0: Upper bound for minimum support; M = 0.1: The lower bound for the220

minimum support). Apriori is easy to implement, but it is computationally221

and memory intensive.222

Predictive Apriori [29] is a variant of Apriori that searches for the best ’n’223

rules using a support-based corrected confidence value. Since we just look224

at the best n rules is this algorithm, to run the algorithm we need to set225

the particular class attribute to predict as well (C= the class index for the226

chosen element to predict from 1 to 5) in each run. Predictive Apriori max-227

imizes the accuracy and minimizes the number of searches as compared to228

Apriori. A rule is added if the expected predictive accuracy of the rule is229

among the ’n’ best and it is not subsued by a rule with at least the same230

expected predictive accuracy [30].231

A Decision Table [31] is a compact and easy to understand method to show232

the relationship between a series of conditions and resultant actions. It is233

based on a decision tree, where each node represents a feature and each234

branch represents a value that the node can assume. To run the algorithm235
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some other parameters had to be defined (e.g. D=1 to set the forward search236

and N=5 which is the number of non-improving nodes to consider before237

terminating search). A Decision Table can be translated into a set of rules238

by creating a separate rule for each path from the root to a leaf in the tree239

constructing an optimal binary.240

Finally, PART [32] is an algorithm that uses partial trees to generate near-241

optimal decision list. This list is what is used to make classifications. Once242

a partial tree has been build, a single rule is extracted from it. To run the243

PART algorithm considering previous parameters we also set minimum num-244

ber of instances per leaf equal to M=2. The difference between heuristics for245

PART and heuristics for Decision Table is that the latter evaluate the aver-246

age quality of a number of disjointed sets (one for each value of the feature247

that is tested), while PART only evaluate the quality of the set of instances248

that is covered by the candidate rule.249

250

4.3. Experimental Setup and Evaluation Framework251

We used the four ARM algorithms to discover rules from our GEO dataset252

(Figure 1). We predicted each feature based on the other features (e.g. ’type’253

was predicted using molecule, label, platform, and organism). An example of254

a rule is: if organism=Homo Sapiens, molecule=total RNA then type=RNA.255

We performed 90:10 cross-validation in which we used 90% of the sample256

data for training and 10% for testing. Since the same sample can be used in257

another series, we partitioned the dataset by superseries such that samples258

that belong to the same study are either all in the training set or all in the259

test set. We assessed classifier performance based on the standard metrics for260

accuracy, precision, recall and F-measure [33]. The summary of the process261

of metadata prediction is shown in Figure 1.a. We then identified predictive262

features by counting the number of times a feature was selected as a feature in263

the model. We visualized the dependencies between all features as a network.264

Results265

In this section, we discuss rules discovered with each of the four ARM266

algorithms over the experimental metadata from the GEO database. We re-267

port on the performance of each algorithm, and discuss associations within268

the rulesets.269

Over five thousand rules were generated from the analysis of the GEO270
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Figure 1: a. Overview of experimental design. b. Examples of rules generated by rule
mining algorithms grouped by type and ordered by decreasing complexity. c. A word
cloud containing high frequency values in rules from the PART algorithm.

database. We divided the rules into two kinds of rules: 1) complex rules271

having at least two elements in the antecedent, and 2) simple rules having272

only one element in the antecedent and one in the consequent. Figure 1.b.273

highlights rules to predict four metadata elements: RNA, Genomic, SAGE,274

and SRA. For example rule 1.1 is a complex rule to predict sample type using275

values from the other 4 features. This rule predicts RNA as type when the276

platform is GPL570 (i.e. the Affymetrix Human Genome U133 Plus 2.0 plat-277

form), the label is Biotin, the type of molecule that was extracted from the278

biological material is total RNA, and the sample was obtained from humans279

(Homo sapiens). In contrast, rule 3.4 is a simple rule that predicts the sam-280

ple type as SAGE, when the platform used is GPL4. For the most common281

sample type, RNA, the generated rules have more variety with varying rule282

complexity (e.g. rule 1.1 with length 5 compared to rule 1.4, a simple rule).283

For the metadata element type, the value SRA is only predicted with the284

length of up to 3 (e.g. rules 4.1,4.2). Next, Figure 1.c. provides insight into285

reoccurring values in rules generated by the PART algorithm. For instance,286

the label Cy3 is most frequently used.287

Next, we sought to understand how each of the four rule mining algorithms288

performed for each of the five selected features drawn from the GEO dataset.289

Figure 2 shows the performance using F-measure, precision, recall and accu-290
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racy for each of the four algorithms and the majority vote baseline. Our re-291

sults indicate that PART is the best classifier. Also, only PART and Decision292

Table consistently outperformed the majority vote classifier for predicting all293

features that we examined. PART and Decision Table outperformed Apriori294

and Predictive Apriori for Label, Organism, and Type. As shown in Figure295

2 for each performance measurement we considered the confidence interval.296

We calculated the confidence interval for 10 iterations for each algorithm. As297

an example, Table S2 in supplementary materials shows the details regarding298

the calculation of traditional confidence interval for all algorithms.299

Next, Figure 3 shows the F-measure to predict the metadata element type

Figure 2: Evaluation Results: Performance measurements for weighted class averages for
each element for all algorithms.

300

using all four algorithms. Our results suggest that the accuracy of pre-301

dicting specific metadata values can vary significantly for each algorithm.302

For instance, ’RNA’, ’SRA’, and ’GENOMIC’ is near perfectly predicted by303
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PART, while lower performance is seen for predicting the ’PROTEIN’ and304

’SAGE’ types. The Decision Table follows the same trend as PART, but is305

less successful for each metadata value for this metadata element. Apriori306

and Predictive Apriori predict ’RNA’, but largely fail for the other values.307

Apriori generates too many unnecessary candidates. A candidate itemset is308

unnecessary if at least one of its subsets is infrequent. This is the major309

reason that we have low performance in Apriori in general [34]. We report310

the F-measure for all values for all metadata elements in the supplementary311

materials (Table S1).312

Next, we analyzed the rules to assess whether performance was influenced

Figure 3: F-measure for predicting different values for the “type” element for each algo-
rithm.

313

by length of rule. Figure 4 shows the rule length for all algorithms. We find314

that the median length of rules is lowest for PART and Predictive Apriori315

(length 2), while nearly all of the Decision Table rules have a length of 3.316

Apriori appears to have the greatest variety in length of rules.317

Finally, we investigated the associations that exist between GEO metadata,318

at least as uncovered by each classifier.319

Figure 5 shows the association network for rules generated by all algo-320

rithms. The association network shows the dependency between elements in321

each algorithm. On the other hand which elements can predict other ele-322

ments. This association between elements also shows which element is more323

predictable based on other elements and reveals the power of each element324

to predict other elements. For example, in PART algorithm the platform325
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Figure 4: Box plot for the distribution of the rule length for all algorithms.

(GPL) has a power to predict all other elements. It means we can predict326

the possible organism, molecule, type and label which are associated with327

the particular platform. As it shown in Figure 5, there are tick arrows from328

platform to other elements, which shows the strong power of prediction of329

other elements based on the platform. The same description assigned to330

other algorithm based on the arrows in the network in Figure 5.331

PART% Decision%Table% Apriori% Predic3ve%Apriori%

Figure 5: A network diagram illustrating associations between all elements (GPL for
platform, Type, Organism, and Molecule) in rules generated by all algorithms. This asso-
ciation shows which element is more predictable based on other elements. It also reveals
the power of each element to predict other elements. Thick lines indicate associations of
bigger than 0.5 (strong association), medium lines indicate associations between 0.05 and
0.5. Associations of strength less than 0.05 are thin lines (weak association).

332
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5. DISCUSSION333

In this work, we explored the use of ARM algorithms to predict structured334

metadata. Our results, based on the analysis of a subset of GEO’s metadata335

elements, support the hypothesis that associations between certain metadata336

elements exist and can be used by ARM algorithms in a predictive manner.337

Our goal is to simplify the authoring of metadata as much as possible for338

metadata submitter with predicting the metadata value and recommend that339

to the metadata submitter during the submission process. We show that algo-340

rithms, which have been used in this study, particularly PART and Decision341

Tables, perform better than using the most frequently occurring metadata342

value for a particular metadata element (i.e. majority vote classifier). We343

found differences in the length of rules generated by different algorithms and344

the quality of their predictions. While our work focused on the metadata in345

the GEO database, we anticipate that our approach can be applied to other346

databases of experimental metadata with similar levels of success.347

Our research has important implications for initiatives aimed at improv-348

ing the quantity and quality of metadata in a prospective and retrospec-349

tive manner. Several efforts are devoted to prospective metadata author-350

ing - they specify metadata that can, should, and minimally must be pro-351

vided. BioSharing.org [6] catalogs guidelines, standards, and the policies for352

databases, journals, and funders. Metadata authoring applications such as353

ISA-Tools [9] or RightField [10] can be used to codify guidelines and enable354

users to author metadata using ontologies from the NCBO BioPortal [11].355

Authoring good metadata is tedious and error-prone, and could benefit from356

more automation. Our work shows that a subset of metadata elements can357

be predicted with sufficiently high accuracy. Thus, our predictive approach358

could be useful for metadata authoring. It could vastly reduce the amount359

of metadata authoring a submitter must do, but also potentially improve the360

quantity and quality of metadata. Generating higher quality metadata with361

less effort is a key part of our NIH BD2K Center for Data Annotation and362

Retrieval (CEDAR) [7], which is developing intelligent tools for metadata au-363

thoring and discovery [8]. We believe that the application of ARM and other364

machine learning algorithms will greatly accelerate metadata authoring, and365

improve the quality of research data submissions; failure to do so will likely366

continue the present situation wherein guidelines are variably applied [35].367

Additionally, metadata prediction can be useful retrospectively. Our predic-368

tive framework can be used to highlight metadata values that differ from our369
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predictions and may need to be more closely examined. We also anticipate370

that we could use the approach to predict missing metadata, subject again to371

further validation by professional users in the field or possibly through crowd-372

sourcing, which has been applied to find and categorize errors in Linked Data373

[36]. Our work is not without limitations. First, a key limitation in ARM al-374

gorithms lies in the vast number of discovered rules and the arbitrary thresh-375

olds applied to limit these rules. The main drawback is that the arbitrary376

thresholds may reduce the amount of information and affect the performance377

of the classifier specifically when we have the high variety of the values (e.g.378

values for the platform). Existing approaches employ different parameters379

to search for interesting rules [37, 38, 22]. This fact and a large number of380

rules make it difficult to compare the output of ARM algorithms. Several381

methods for solving this problem such as rule reduction methods, associa-382

tion rule refinement and association rules for supervised classification have383

been proposed [38]. Most studies suggest the latest one is the more effective384

one [38, 30, 22]. Second, our method is currently focused on learning rules385

from structured metadata. However, databases of experimental metadata386

often contain textual descriptions which could not be used directly in our387

approach. In previous work, we showed that experimental metadata could388

be predicted using classifiers trained with term frequency-inverse document389

frequency (TF-IDF) based models [18].390

Finally, while our work showed promise in predicting some of the metadata391

values in GEO, it remains to be seen how well the approach will be with392

other experimental databases. We expect that our approach will work well393

with well structured data sets such as the Sequence Read Archive (SRA),394

but perhaps do less well on data sets with less metadata. Further study on395

data sets comprised of different sizes, different varieties of the values for each396

element, and different combination of structured and unstructured elements397

is needed. It is also unclear whether data from one database can be usefully398

combined with data from other databases to improve prediction.399

400

6. CONCLUSION401

We have shown that predicting metadata using ARM algorithms is pos-402

sible using an existing large biomedical database such as GEO. Future work403

will focus on expanding this application to other databases such as Biosam-404

ple datasets (e.g. SRA), more comprehensive metadata as well as aggre-405
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gation with other models from our previous works on both structured and406

unstructured metadata [18]. GEO database includes both structured and407

unstructured metadata as well as other resources. We will extend our meth-408

ods from previous work such as LDA and TF-IDF to other unstructured data409

(e.g. abstract of the related manuscript associated with the studies) to im-410

prove additional information to improve classification. However, an ensemble411

classifier could be considered to combine predictions given by different meth-412

ods, i.e. from rule-based algorithms trained on structured metadata and413

from other machine learning methods trained on textual features. Predictive414

metadata can be used both prospectively to facilitate metadata authoring,415

and retrospectively to improve, correct and augment existing metadata in416

biomedical databases.417
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*Graphical Abstract



  

Highlights 
 

 Associations between certain metadata elements exist and can be used by ARM 
algorithms in a predictive manner. 

 

 Particularly PART and Decision Tables, perform better than using the most frequently 
occurring metadata value for a metadata element. 

 

 Our predictive approach could be useful for metadata authoring. It could vastly reduce 
the amount of metadata authoring a submitter must do, but also potentially improve 
the quantity and quality of metadata. 

*Highlights (for review)


